On Quadratic Convergence of DC Proximal Newton Algorithm for Nonconvex Sparse Learning in High Dimensions
نویسندگان
چکیده
We propose a DC proximal Newton algorithm for solving nonconvex regularized sparse learning problems in high dimensions. Our proposed algorithm integrates the proximal Newton algorithm with multi-stage convex relaxation based on difference of convex (DC) programming, and enjoys both strong computational and statistical guarantees. Specifically, by leveraging a sophisticated characterization of sparse modeling structures/assumptions (i.e., local restricted strong convexity and Hessian smoothness), we prove that within each stage of convex relaxation, our proposed algorithm achieves (local) quadratic convergence, and eventually obtains a sparse approximate local optimum with optimal statistical properties after only a few convex relaxations. Numerical experiments are provided to support our theory.
منابع مشابه
On Quadratic Convergence of DC Proximal Newton Algorithm in Nonconvex Sparse Learning
We propose a DC proximal Newton algorithm for solving nonconvex regularized sparse learning problems in high dimensions. Our proposed algorithm integrates the proximal newton algorithm with multi-stage convex relaxation based on the difference of convex (DC) programming, and enjoys both strong computational and statistical guarantees. Specifically, by leveraging a sophisticated characterization...
متن کاملComplexity of Inexact Proximal Newton methods
Recently several, so-called, proximal Newton methods were proposed for sparse optimization [6, 11, 8, 3]. These methods construct a composite quadratic approximation using Hessian information, optimize this approximation using a first-order method, such as coordinate descent and employ a line search to ensure sufficient descent. Here we propose a general framework, which includes slightly modif...
متن کاملQuasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization
Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.
متن کاملA proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions
We propose an algorithmic framework for convex minimization problems of composite functions with two terms: a self-concordant part and a possibly nonsmooth regularization part. Our method is a new proximal Newton algorithm with local quadratic convergence rate. As a specific problem instance, we consider sparse precision matrix estimation problems in graph learning. Via a careful dual formulati...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1706.06066 شماره
صفحات -
تاریخ انتشار 2017